Outline of the Talk

Introduction

Three cases

a circumbinary disk (UY Aur)
a circumstellar disk in a binary system (HK Tau)
a circumstellar disk (TW Hya)

TABLE 2. Disk parameters for CTTSs											
	Runs (AU)	Round (AU)	i	P	В	q	$M_{ m disk} \ (M_{ m Q})$	reference			
HH 30		250	> 80	0.75	1.45		0.006	[28]			
HK Tau/c		105	85	0.3 1.5	1.2		6×10^{-4}	[144]			
GG Tan	525	> 220	43	1.5	1.25	0.5	~ 0.17	[44]			
DM Tau	850		33	~ 1.5	1.26	0.63	≤ 0.025	[68]			
UY Aur	~ 1000	> 650	42				≤ 0.01	[45][34]			
GM Aur	525	>200	56	1.57	1.18	0.64	0.025	[43]			

The values in this table are difficult to estimate. They cause have the last reaches and observations we found.

But the reside should be some they are subject to change in the future.

Introduction

- Results presented here collected during surveys, with the Hubble Space Telescope. They are compared with results from Adaptive Optics and millimeter interferometry
 - Estimating the disk parameters is not easy Fraction of disk detected by

IRAS = >80%

1.3mm flux (single dish) = ~50% (in Taurus)

with HST (cycle 7 snapshot survey) = ~10%

3 typical cases in what follows

The case of HK Tauri

2.4" binary, both CTTS

primary is an M1, We(H α) = 50A secondary is an M2, We(H α) = 13A Secondary has disk edge-on, i>85° HK Tau/B is not seen directly, A $_v$ >80

Rout = 105AU

small disk
Truncated by tidal forces?

HK Tau: Disk Masses from scattered light

Thickness of dark lane is good-indicator of disk mass

9 X10⁻⁴ M_{sun}

Brightness distribution is asymmetric?

Similarity with HH30 -

HK Tau: Disk Masses from thermal emission

Low-mass of the secondary disk is confirmed by mm mapping

Primary also has disk, more massive, but not edge-on?

HK Tau: Misaligned disks?

Polarimetry suggests non-

- aligned disks?
 - Jensen, Donar & Mathieu (2000)

 Menard & Chrysostomou, (2000)

The case of U Y Aurigae.

Binary: 0.88" sep. @ 220°, two CTTS

Spectral types: K7 & M2 (Duchene et al 1999)

- Second example, after GG Tau, of circumbinary disk/ring

Gas disk is large (Rout > 1000AU)

Thermal emission from dust in disk not detected.

→ Duvert et al. 1998

Dust disk detected in scattered light

→ Close et al. 1998 ·

UY Aur: A Complex environment

Many Structures are visible

the circumbinary disk

a "patch" of complex nebulosity SE of UY Aur

an inner "arc"

→ Most AO structures recovered

Disk does not wrap around nicely

Radiative transfer effect?

HST F814W, 600sec WF3

UY Aur: ** larger inclination is better

inclination larger than previously estimated,

 $\rightarrow i=65^{\circ} +/-5^{\circ}$

- not compatible with AO data allows to explain;

back/front intensity contrast
gas emission in the central gap
smaller central mass needed
dynamic mass more in agreement w/evolutionary tracks

UY Aur: What is that "clump"?

Motions of the gas is complex and

- multiple components are detected:
 - ♣ Keplerian disk
 - A Streamer
 - A "knot" of emission, no spatial motion
 - velocity width > 1.0 km/secnot part of Keplerian motion

UY Aur: What is that "clump"?

Motion of the gas is complex

multiple components are detected

"Clump" coincides with a feature in the ¹³CO(2-1):

• channel maps

The case of TW Hydrae

TW Hya is a CTTS

Spectral type = K7Ve

 $H\alpha$ is strong and variable

IR and mm excesses

Photometrically variable, P=2.196d, amplitude larger in blue

→ hot spots from accretion

no molecular cloud nearby

Distance is 56.4+/-7pc (Hipparcos)

TW Hya is one of oldest CTTS known = 10-20Myr

TW Hya: A-Pole-on Disk!!!

TW Hya in HST/WFPC2 Krist et al. 2000

Ra₩

PSF

F814W

Unexpected!

i=0°, azimutal symmetry

- difficult to isolate from PSF Lucky the distance is small
 - → would have missed it at 140pc

IAU 200: The Formation of Binary Stars

TW Hya: Not a PSF-Subtraction. Artifact

TW Hya: The Dust Mass in the Disk

Previous estimates:

- From CO: 3 X 10⁻⁵ M_{sun}, significant depletion (300!)
 - → Kastner et al. 1997
- From $800\mu m$: ~ $45M_{earth}$
 - → Weintraub et al. 1989

Our estimate, from scattered light models:

30 Mearth for the dust only

What is the total disk mass?

Depends on gas/dust ratio '

→ not clear yet

TW Hya - PSF_a

(PSF_a + Model) - PSF_b

IAU 200: The Formation of Binary Stars

Summary *

Numerous high resolution images of disks available

wide range of inclination covered multi-wavelength approach possible

→ very important

Results on CTTS Disks summarized in

Menard & Bertout (1999) Crete II meeting

Close PPIV

	Rimi (AU)	Real (AU)	i	P	β	q	$M_{ m obj}$ $(M_{ m G})$
HH 30		250	> 80	0.75	1.45		0.008
HK Tau/c		105	85	0.3 - 1.5	1.2		(6×10^{-4})
GG Tan	525	> 220	43	1.5	1.25	0.5	70-0:21
DM Tau	850		***	~ 1.5	1.26	0.63	≤ 0.025
UY Aur	~ 1000	> 650 ((65)				≤ 0.01
CM Aur	525	>200	150	1.57	1.18	0.64	0.025
TW Hya		240	<10		1.125		0.009

What's next???

Why are they so difficult to image?

Low detection rate with HST and AO

- How do these disks evolve?

See poster by Augereau et al.

How.do Planetesimals/Planets form?

Thanks to Jean-Charles Cuillandre and Greg Fahfman for background images. These images were obtained with the CFH12K wide-field camera.